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Abstract

Diffusion in anisotropic host±guest systems exhibiting a Langmuir-type adsorption isotherm is investigated using a tracer counter-

permeation (TCP) simulation technique. In the TCP simulations, tagged and untagged molecules counter-diffuse through zeolite

membranes of ®nite thickness. Fick's law is used to measure the diffusivities at high equilibrium occupancy, as a function of the membrane

thickness, L, and anisotropy, �. For values of ��1, sorbate motion in the plane of the membrane is very rapid and washes out any

correlations in the transmembrane direction, so that diffusion is well modeled by mean ®eld theory. As � is reduced, correlations between

the motion of nearby molecules decrease the counter-diffusivity, but diffusion remains `̀ normal'' in the sense that the diffusivity is

independent of thickness for suf®ciently thick membranes. For membranes with ��0, a single-®le mode of diffusion occurs for all

membrane thicknesses, and the counter-diffusivity becomes inversely proportional to thickness for thick membranes. Membranes with ��1

exhibit a single-®le diffusion mode for thin membranes that changes over to a normal diffusion mode as the thickness is increased. We have

also determined that the rate of transmembrane permeation is controlled by the ratio of the diffusion time to the sorption time, which is

given by kdL/D where D is the counter-diffusivity and kd is the desorption coef®cient. When permeation is diffusion limited, an assumption

of local thermodynamic equilibrium is appropriate at the edges, and the permeability coef®cient is independent of membrane thickness. On

the other hand, when permeation is sorption limited, the edge concentrations are not determined by the isotherm, and the permeability

coef®cient depends on thickness so that the permeance is itself independent of membrane thickness. # 1999 Elsevier Science S.A. All

rights reserved.
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1. Introduction

The transport properties of adsorbed molecules play a

central role in zeolite-based separations and catalysis [1±3].

Although computational studies have greatly enhanced our

understanding of self-diffusion in zeolites [4,5], very few

have modeled transport diffusion [6±11], which arises from

a non-equilibrium chemical potential gradient, and is the

process most relevant to industrial applications. Modeling

transport diffusion in zeolite membranes is of increasing

practical importance because of recent progress in synthe-

sizing continuous zeolite membranes [12±15]. In this paper,

we report diffusion theory and kinetic Monte-Carlo simula-

tions of transport diffusion through model zeolite mem-

branes, to explore how permeation is controlled by

microscopic and macroscopic system parameters.

Permeation through zeolite membranes is controlled by

several factors, including membrane thickness and continu-

ity, zeolite framework topology and alignment, intra- and

extra-crystalline molecular jump rates and heats of adsorp-

tion, temperature, and external driving forces such as com-

position and concentration gradients. Although our eventual

goal is to include as many of these effects as possible,

including too many at once will make it dif®cult to deter-

mine which aspects of the model are essential to the theory

and simulation results. In this article, we focus on how

membrane thickness, molecular jump rates, and heats of

adsorption affect membrane permeation.

In order to determine the relative importance of these

factors, and to keep the simulations tractable, we begin by

modeling a simple zeolite membrane composed of a two-

dimensional square lattice of identical adsorption sites, of

®nite extent in the transmembrane direction, and having

periodic boundary conditions in the other direction. We also

assume that site occupation numbers are either zero or one,
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and that sorbates do not otherwise interact with each other.

In future work, we will consider more complicated lattice

structures and sorbate±sorbate interactions, to determine the

importance of these additional factors.

The lattice described above has special adsorption and

diffusion properties, making it a good starting point for

further development of membrane permeation models.

Indeed, it is straightforward to show that our present model

gives a Langmuir adsorption isotherm [16]. For that reason,

we refer to host±guest systems that are well represented by

this model as `̀ Langmuirian.'' The transport diffusion

coef®cient for this lattice model can be de®ned by Fick's

law, J�ÿDr�, where J is the net ¯ux through a surface, D is

the transport diffusivity, and r� is the local concentration

gradient perpendicular to the surface. The concentration

dependence of D is of special interest, and is usually

discussed in terms of the Darken equation [1,9],

D � DC
@lnf

@ln�

� �
T

; (1)

where DC is the so-called corrected diffusivity, f the fugacity

of the external ¯uid phase, � the intra-crystalline sorbate

concentration, and T is the temperature. The Darken equa-

tion is especially useful when the corrected diffusivity is

nearly independent of occupancy, so that the concentration

dependence of the transport diffusivity is controlled by the

thermodynamic factor. It is well known, however, that the

single-component transport diffusivity in Langmuirian

host±guest systems is itself independent of concentration

[7,17], rendering the corrected diffusivity less useful in this

case. For this reason, we focus on calculating the transport

diffusivity from Fick's law, to investigate the factors con-

trolling zeolite membrane permeation.

Diffusion anisotropy in zeolites results from molecular

jump rates that depend upon direction [18,19]. Diffusion

anisotropy takes on special importance for permeation

through oriented zeolite membranes, because the anisotropy

introduced by a transmembrane concentration gradient can

couple with the anisotropy inherent in a zeolite±sorbate

system, yielding novel transport properties. In our two-

dimensional lattice model, anisotropy leads to single-®le

transport through the membrane at one extreme, and single-

®le transport in the plane of the membrane in the other

extreme. Although single-®le motion at ®nite loadings

exhibits normal concentration-independent, single-compo-

nent transport diffusion, single-®le motion gives rise to

anomalous self-diffusion, wherein the mean-square displa-

cement (MSD) scales at long times as
��
t
p

rather than t

[20,21]. It is therefore of interest to investigate the signature

of such anomalous self-diffusion in a membrane transport

system. However, since the long time limit of the MSD

may not be accessible in a membrane of ®nite thickness,

and since the natural observable in a permeation measure-

ment is steady-state ¯ux rather than the MSD, we need

to imagine a convenient experiment that can probe this

anomalous diffusion. Indeed, it has been shown that two-

component, equimolar counter-permeation of identical,

labeled species yields transport identical to self-diffusion

[8]. Such a situation is closely related to the tracer zero-

length column experiment developed by Ruthven and co-

workers [22].

In this paper, we will examine how extreme diffusion

anisotropy produces anomalous transport through zeolite

membranes of various thicknesses, by performing tracer

counter-permeation (TCP) computer experiments. Fick's

law is applied directly to determine the counter-diffusivities

under steady-state conditions. We ®nd that the counter-

diffusivity is independent of membrane thickness in all

cases that are not strictly single-®le, as long as the mem-

brane is suf®ciently thick. When the diffusion anisotropy

favors motion normal to the transmembrane direction, we

®nd that mean ®eld theories of diffusion are quantitatively

accurate; while in the other case we ®nd the signature of

anomalous diffusion, namely that the counter-diffusivity

scales inversely with the membrane thickness [23,24].

The remainder of this paper is organized as follows: in

Section 2 we review the theory of two-component tracer

diffusion; in Section 3 we describe how we model the

membrane transport system; in Section 4 we discuss the

details of the simulation method; in Section 5 we detail the

results of the simulations; in Section 6 we discuss our

®ndings; and in Section 7 we give concluding remarks

for future work.

2. Diffusion theory

2.1. Langmuirian host±guest systems

In this paper, we investigate host±guest systems with a

Langmuir adsorption isotherm. Such a system is shown

schematically in Figs. 1 and 2. The basic requirement for

a host±guest system to be `̀ Langmuirian'' is that the host

has a periodic array of identical adsorption sites that may

contain at the most one guest molecule. The adsorption sites

are represented as squares in Fig. 1 and energy minima in

Fig. 2. The differential heat of adsorption is independent of

sorbate loading up to a fractional occupancy of ��1, i.e. the

sites are energetically uncoupled from each other. It is also

assumed that diffusion proceeds by a sequence of thermally

activated jumps, in which a sorbate molecule jumps from

one site to a vacant nearest neighbor site, only after over-

coming an energy barrier of Ex in the x-direction (see

Fig. 2). Attempted jumps to occupied sites are unsuccessful

because double occupancy is forbidden.

A Langmuirian host±guest system exposed to a ¯uid will

have an adsorption isotherm of the form:

�eq � 1

1� �kd=v� ; (2)

where �eq is the equilibrium occupancy, which is uniform

throughout the system and kd is the rate coef®cient for
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desorption, via thermally activated hops of a molecule

located in an edge site to the ¯uid phase. v is the rate of

insertion attempts of molecules from the ¯uid phase into

each exposed adsorption site at the edge of the zeolite.

Eq. (2) is derived by equating the rate of actual insertion,

v(1ÿ�eq), and the rate of desorption, kd�eq, at equilibrium.

Because our goal is a kinetic transport study, this kinetic

form of the Langmuir isotherm is most relevant to the

systems under consideration here. For an isothermal ideal

gas, v is proportional to the gas pressure, and the more usual

form of the Langmuir isotherm is recovered:

�eq � 1

1� �b=p� ; (3)

wherein occupancy is given as a function of the pressure, p.

Transport diffusion of a single component in a Langmuir-

ian host±guest system is consistent with Fick's law for all

simple lattices [7,17,25]:

J � ÿDr�; (4)

where J is the net particle ¯ux (number per unit area per unit

time) andr� is the occupancy gradient in a non-equilibrium

system. For the system shown in Fig. 1, r� is de®ned as

r��(�n�1ÿ�n)/�x, where �n is the occupancy of column n,

and �x�1 is the distance between adjacent columns. The

transport diffusion coef®cient, D, is independent of occu-

pancy [17,25], position and concentration gradient [7]. At

®rst glance this result is quite surprising, since the effective

jump rate for a given molecule depends strongly on con-

centration, being of the form kx(1ÿ�) within the mean ®eld

approximation, where kx is the jump rate coef®cient. A

simple explanation of this result [26] is that the reduction in

the actual ¯ux of particles from one lattice site to another is

compensated by an equal reduction in the actual ¯ux in the

opposite direction, so that the net ¯ux is unaffected by the

exclusion of double occupancy.

Fig. 1. Schematic representation of a Langmuirian zeolite membrane with

tracer counter-permeation (TCP) boundary conditions. Differently labeled

particles move through the membrane with the same rates: kx and ky for

jumps in the x- and y-directions, and kd for jumps out of the lattice.

Constant chemical potentials of components A (darker circles) and B

(lighter circles) are maintained by adsorption rates vA and vB at the left and

right edges, respectively. Periodic boundary conditions are maintained in

the y-direction.

Fig. 2. Schematic representation of the Langmuirian host±guest potential energy in the x-direction. Adsorption sites (minima) are separated by an energy

barrier of Ex. Desorption from an edge site requires energy Ed. Double occupancy is forbidden, but otherwise guests do not interact with each other.
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This simple Langmuirian host±guest model appears to be

an excellent approximation for several important zeolite±

sorbate systems. A typical example is cyclohexane in

silicalite, where experimental results are consistent with

the Langmuirian model up to a maximum loading of four

molecules per unit cell [19]. Speci®cally, the adsorption

isotherm is Langmuirian, and the differential heat of adsorp-

tion and single-component transport diffusion coef®cient

are found to be nearly independent of sorbate loading. This

should be expected because the channel intersections, where

cyclohexane is adsorbed, are separated by a relatively large

distance, so that the molecules in adjacent sites do not

interact strongly.

Silicalite±sorbate systems that involve smaller sorbate

molecules, which preferentially adsorb in the eight channel

segments between intersections in the silicalite unit cell, can

also be modeled as Langmuirian host±guest systems for the

®rst step of the isotherm, provided that there is no signi®cant

occupation of other adsorption sites. In this case, the

Langmuirian occupancy, �, must be expressed as a fractional

occupancy of the most stable sites. In molecular dynamics

simulations of methane in silicalite, the transport diffusiv-

ities were found to be independent of loading, up to a

loading of nearly eight methane molecules per unit cell

[9]. This concentration-independent, single-component

transport diffusivity in silicalite has also been observed

experimentally for a number of sorbate molecules, includ-

ing: methane, ethane, propane, n-butane, n-pentane and iso-

butane [27,28];, benzene, toluene, and 2-methylbutane [29±

31]; and cyclohexane, methylcyclohexane, and ethylcyclo-

hexane [19].

2.2. Matrix formulation of diffusion

As mentioned in the introduction, we wish to investigate

two-component transport diffusion in an anisotropic mem-

brane. The theory for the corresponding isotropic membrane

has been reported previously [8], and can be used for the

anisotropic membranes investigated herein. We de®ne the

spatially and temporally varying occupancies of the com-

ponents A and B, co-adsorbed in a Langmuirian membrane

as follows: �A,n(t) is the number of lattice sites ®lled with A-

particles at time t in column n, divided by the number of

sites in column n; �B,n(t) is de®ned similarly for B-particles.

�T,n(t) is the total fractional occupancy of column n at time t,

de®ned as �T,n(t)��A,n(t)��B,n(t). In what follows, we will

omit the explicit dependence on column n and time t, e.g.

�A,n(t)!�A, unless clarity requires otherwise.

It is well established that the scalar form of Fick's law

should be replaced by a vector equation of the form

[2,8,25,32,33]:

JA

JB

� �
� ÿ DAA DAB

DBA DBB

� � r�A

r�B

� �
; (5)

where species A and B have identical diffusive properties.

The diffusion matrix (5) is asymmetric and has two eigen-

vectors that correspond to the two eigenmodes of diffusion

for differently labeled, identical particles. The co-diffusion

eigenmode has A and B diffusing together, with driving

forces proportional to their occupancies, so that the labeling

of the particles does not affect their transport. In this

eigenmode the ¯ux of component A can be written in a

scalar form of Fick's law:

JA � ÿD�Ar�A; (6)

and likewise for component B. The apparent diffusivities,

D�A, for the co-diffusion eigenmode are given by:

D�A � D�B � D0; (7)

where D0 is the single-component transport diffusivity

which is independent of loading. Thus, the two components

diffuse together as if the other component were not present.

The other eigenmode corresponds to equimolar counter-

diffusion, where the ¯ux of A is equal and opposite to the

¯ux of B at constant �T, so that

r�B � ÿr�A: (8)

The apparent diffusivities (6) for counter-diffusion are

given by

D�A � D�B � D0�1ÿ �T�f ��T� � DS��T�; (9)

where f(�T) is the so-called correlation factor. Eq. (9) shows

that the apparent diffusivities arising from equimolar coun-

ter-diffusion are identical to the self-diffusion coef®cient,

DS. D0 is the single-component transport diffusivity, and is

also the self-diffusion coef®cient at in®nite dilution; i.e.

where all jump attempts are successful. (1ÿ�T) is the

fraction of initial jumps that are successful because they

are directed towards a vacancy. Immediately after a success-

ful jump there is always a vacancy at the particle's original

position. The increased probability of the particle returning

to its original position is accounted for by the correlation

factor f, which is less than one.

In mean ®eld theory, the correlations between successive

jumps of a particle are ignored, making the correlation

factor equal to unity. This approximation is valid at low

loadings, where each particle is likely to be surrounded by

vacancies. At high loadings, the correlations between suc-

cessive jumps reduce the self-diffusivity by the factor f. The

theory of correlated motion on anisotropic square lattices of

Tahir-Kheli and El-Meshad [34] is directly applicable to our

study, and will be used below. For brevity, we do not

reproduce their theory here.

Eq. (9) demonstrates the correspondence between self-

diffusion and the transport diffusivity measured during

tracer counter-permeation (TCP). This theory is a special

case of the more general theory presented by Kehr et al.

[25], based on an Onsager formalism that was devised for

diffusion in a lattice-gas model of a two-component alloy.

In what follows, we will investigate the effect of lattice

anisotropy and ®nite system size on the correlation factor,

f(�T).
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2.3. Finite difference formulation of diffusion

The kinetic theory for sorption and diffusion in a Lang-

muirian host±guest system is based on a ®nite difference

formulation of diffusion [8], which we brie¯y describe

below. The nodes in the ®nite difference formulation have

the physical meaning of being adsorption sites. Hence the

grid spacing in the ®nite difference formulation is the

distance between sites, �x. For two-component diffusion

in the interior of the lattice, we can write [8]:

�~�n

�t
� D�h�T�n; nÿ 1�i��~�nÿ1 ÿ ~�n�
ÿ D�h�T�n; n� 1�i��~�n ÿ ~�n�1�; (10)

and we can write:

�~�1

�t
� vA�1ÿ �T;1� ÿ kd�A;1

ÿkd�B;1

� �
ÿ D�h�T�1; 2�i��~�1 ÿ ~�2�

(11)

for column 1 with a similar equation for column L. The

diffusion matrix, D, is evaluated using a concentration,

h�T(m,n)i, that is averaged between adjacent columns m

and n.

3. Model membrane system

Consider a lattice membrane as shown in Fig. 1. The

adsorption sites are shown as square regions that may

contain either an A-particle or a B-particle, or may be

vacant. Each site can contain at the most one particle so

that double occupancy is rigorously excluded. The A and B

particles are distinguishable by, e.g. isotopic labeling, but

are otherwise identical in terms of their transport properties.

The lattice model and boundary conditions follow those

used previously for isotropic zeolite membranes [8].

In the simulations reported here, the lattice is initially

empty (at t�0), and particles are introduced into the lattice

(t>0) by particle insertions into the edge columns of the

lattice. These particle insertion attempts are made at a

constant rate per edge site, but in accordance with the

exclusion of double occupancy condition, only particle

insertion attempts into empty lattice sites are successful.

Insertion attempts into an already occupied lattice site result

in no net change in the con®guration of the lattice. The left-

hand edge of the lattice is exposed to an in®nite reservoir of

A-particles at constant chemical potential, while the right-

hand edge is exposed to an in®nite reservoir of B-particles at

constant chemical potential. The constant chemical poten-

tial boundary condition at the left-hand side is maintained

by a constant rate, vA of A-particle insertions per vacant

edge site. The boundary condition on the right-hand side is

maintained similarly by B-particle insertions at rate vB.

Particles desorb from the edges into the reservoir with a

rate coef®cient kd. Once a particle desorbs into the in®nite

reservoir, it has zero probability of returning. In the systems

discussed here, the rate coef®cient, kd, is the same for both A

and B particle types because they are assumed to have

identical properties, except for being labeled.

Transport throughout the lattice is achieved by particle

jump attempts from one site to an adjacent site with the rates

kx and ky, in the x- and y-directions, respectively. We de®ne

the anisotropy parameter, �, as being the ratio

� � ky

kx

(12)

of the attempted jump rates in the y- and x-directions. ��1

corresponds to an isotropic lattice, �>1 corresponds to a

membrane where the jump rate in the transmembrane

direction is slower, and �<1 corresponds to a membrane

where diffusion is faster in the transmembrane direction.

The limiting case ��0 corresponds to single-®le diffusion.

In accordance with the requirement that double occu-

pancy must be excluded, only attempted particle jumps

toward a vacant site are successful, so that attempted jumps

towards an occupied site result in no actual change in the

system con®guration. The top and bottom edges of the

lattice are connected together using periodic boundary

conditions, so that a particle that jumps upwards from

the top row appears in the bottom row as indicated in

Fig. 1.

Fig. 2 shows a schematic energy diagram for the guest

molecules as a function of position in the host lattice. In

going from a position outside of the lattice to an adsorption

site inside the lattice, the molecules energy is lowered by an

amount Ed, which is the energy of adsorption. At this level

of theory, we assume that the rate at which A-molecules

enter an empty site from the ¯uid phase is determined by the

frequency vA, i.e. the frequency with which molecules from

the external phase strike the zeolite with a trajectory that

leads to adsorption. For an external, ideal gas phase, this

frequency is proportional to the collision frequency of

molecules with a plane of unit area in the gas phase. Hence,

for low pressure gas phases, the frequency is proportional to

the pressure in isothermal systems, and from the kinetic

theory of gases we have the more general result that:

vA � �1�gas

����
T
p

; (13)

where �1 is a prefactor determined by the surface topology

of the zeolite and the mass of the molecule, �gas the gas

phase density and T is the absolute temperature. The rate

coef®cient for desorption of a molecule in an edge site to the

external phase is given by

kd � �2 exp�ÿ�Ed�; (14)

where ��1/kBT, kB is Boltzmann's constant, and we have

assumed that the exit of the molecule from the lattice is a

thermally activated process with an activation energy given

by the heat of adsorption. The rate at which a particle hops

from one adsorption site to an adjacent adsorption site in the
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x- and y-directions are given by

kx � �3 exp�ÿ�Ex� and ky � �4 exp�ÿ�Ey�; (15)

where Ex and Ey are the activation energies for jumping

between two adjacent sites in the x- and y-directions,

respectively. The processes governed by the rates kx, ky,

kd, vA, and vB are assumed to be independent Poisson

processes with an instantaneous probability that is Marko-

vian, i.e. the probability only depends on the current state of

the system, and does not depend the system's history.

4. TCP simulation method

In this paper we are primarily interested in the properties

of host±guest systems at high fractional occupancies, e.g.

�T�0.9. It is at high occupancy that the effects of correla-

tions are most signi®cant, and the counter-diffusion eigen-

mode is signi®cantly different from the co-diffusion

eigenmode. In the simulations reported here, we use a

vacancy algorithm [25,35,36] wherein a particle-vacancy

pair is chosen by looking ®rst for the vacancy. The approach

of [7,8] may be called a `̀ particle method,'' as the vacancy-

particle pair is found by ®rst selecting a particle. The

particle method becomes most ef®cient at low particle

concentrations, while the vacancy method is most ef®cient

at low vacancy concentrations. At intermediate concentra-

tions, a process list [37] could be used to eliminate unsuc-

cessful jump attempts from the simulation scheme. The

advantage of the vacancy algorithm is its simplicity, since

only a list of the vacancy coordinates needs to be maintained

in the simulation.

All distinct types of events, i.e. events with the same rate,

that occur in the model system must be identi®ed [7]. There

are three distinct types of vacancies in our simulations,

determined by whether they are in the bulk of the lattice

(columns 2 to Lÿ1), in the left edge column of sites (column

1), or the right edge column of sites (column L). For

vacancies in the bulk of the lattice, there are two types of

events that can occur. These are the attempted exchanges of

a selected vacancy with a particle in the x- or y-directions. If

there are Nb vacancies in the bulk of the lattice, these two

event types, (i) and (ii), occur with a total rate of 2kxNb and

2kyNb for attempted particle exchanges in the x- and y-

directions, respectively. The factor of 2 arises because either

positive or negative particle displacement attempts occur at

the same rate.

There are eight other types of events that can occur in the

simulation, four each for columns 1 and L. In column 1 there

are M sites containing N1 vacancies and MÿN1particles, and

the event rates are: (iii) 2kyN1 ± for attempted vacancy

moves in either the positive or negative vertical direction;

(iv) kxN1 ± for attempted vacancy exchange with a particle in

column 2; (v) vAN1 ± for A-particle insertion into a vacant

site in column 1; and (vi) kdM ± for attempted particle

desorption from column 1.

In event types (iii) through (v) a vacancy in column 1 is

selected ®rst. Event type (vi) is a particle-type move, as one

of the M sites in column 1 is selected ®rst, and if that site

contains a particle, it desorbs from the lattice and is replaced

by a new vacancy. If the site contains a vacancy, the time

variable is incremented but there is no change in the system

con®guration. At the right hand edge, the four event types

are: (vii) 2kyNL ± for attempted vacancy moves in either the

positive or negative vertical direction; (viii) kxNL ± for

attempted vacancy exchange with a particle in column

Lÿ1; (ix) vBNL ± for B-particle insertion into a vacant site

in column L; and (x) kdM ± for attempted particle desorption

from column L.

We coordinate the events as follows [7]. There are at most

j�10 independent event types that can occur in the simula-

tion with an total instantaneous rate of

ktot �
Xj

i�1

ki; (16)

so that the mean time elapsed before the next event is given

by 1/ktot, and the probability that the next event is of type i is

given by

Pi � ki

ktot

: (17)

We are able to use the average inter-event time 1/ktot

rather than a number taken from the distribution,

Pint � ktot eÿktott, because 1/ktot�1/kx for all times [7]. Using

this variable time step method, no special algorithm [11] is

required for high pressure (large vA, vB) simulations.

4.1. Simulation experiments

In the simulations reported here, the membrane is as

shown in Fig. 1 but the membrane thickness L is varied

from L�10 to L�100, and the membrane typically has a

width of M�320 sites in the y-direction. For simplicity, the

intrinsic rate kx for jump attempts in the x-direction is used

to set a dimensionless timescale for the simulations such

that the unit of time is ��1/4kx. � is the average residence

time of a particle in an adsorption site of an isotropic square

lattice.

In all the simulations reported here we have set the

desorption rate equal to:

kd � kx

100
; (18)

to model the fact that jumping within the lattice is usually

much faster than desorbing from the zeolite. Substituting in

Eq. (15) we ®nd that:

kx

kd

� 100 � �3 exp�ÿ�Ex�
�2 exp�ÿ�Ed� : (19)

If we set the prefactors on the right-hand side of this

equation to be equal, we ®nd that this corresponds to a

48 P.H. Nelson, S.M. Auerbach / Chemical Engineering Journal 74 (1999) 43±56



system temperature of:

T � Ed ÿ Ex

kB ln�kx=kd� : (20)

Using experimental values for silicalite-cyclohexane

obtained by MagalhaÄes et al. [19] for the heat of adsorption,

Ed�17.5 kcal/mol, and the activation energy for transport

diffusion in the fastest direction, Ex�11.5 kcal/mol, we ®nd

that the temperature of our simulations corresponds to

T�656 K for cyclohexane in silicalite. This temperature

was chosen primarily for simulation ef®ciency.

In addition to determining the ratio kx/kd, the temperature

enters the theory and simulations through the timescale � .

Under certain assumptions this can be determined from data

for cyclohexane in silicalite [19], yielding ca. ��2�10ÿ7 s.

This serves as the fundamental unit of time in our kinetic

Monte-Carlo simulations. Using this unit of time, the dura-

tions of the TCP simulations reported here correspond to

experimental times ranging from about 2 ms to about 10 s.

In all the simulations we set vA�vB with a value chosen from

Eq. (2) to give a total occupancy at steady-state of �T�0.9

throughout the system. The physical pressure corresponding

to this occupancy can be obtained from an isotherm at

T�656 K.

The motivation for using the TCP boundary conditions

shown in Fig. 1, is that we are interested in the equimolar

counter-diffusion eigenmode of diffusion for lattices of

®nite size. At steady-state, the ¯ux of species A is equal

and opposite to that of species B, and the total occupancy

�T is uniform throughout the lattice. This means that we

can use Fick's law, Eq. (6), to determine the apparent

diffusivity within the counter-diffusion eigenmode

between any two adjacent columns. The terms in Eq. (6)

then have the following interpretation: JA is the transmem-

brane ¯ux at steady-state, which is independent of lattice

position; r�A is replaced with the difference in A-occu-

pancy between two adjacent columns i and i�1, separated

by a distance �x�1 giving (�A,i�1ÿ�A,i)/�x; and D�A�i� is

the local counter-diffusion eigenvalue for diffusion between

columns i and i�1. By determining the diffusivity in this

way, any system-size effects are immediately apparent

as a deviation of the local apparent diffusivity from the

bulk value.

5. Results

5.1. h�1 ± Isotropic membrane

In the ®rst simulation, we investigate the case of an

isotropic lattice (��ky/kx�1). The system is therefore very

similar to those presented previously [8], and serves as a

valuable check on the vacancy algorithm developed above.

The main difference in the present physical model is that we

use a realistically slow desorption rate, with kd�kx/100,

while in the earlier work we assumed that kd�kx.

Fig. 3 shows the time development of the concentration

in selected columns of a membrane of thickness L�20 and

M�320 sites in the y-direction. The data shown are the

average values taken from an ensemble average of 50

independent simulation runs. The time period shown in

Fig. 3 is the transient period. The subsequent time interval

of length 45 000 time units was used to gather the steady-

state data shown in Fig. 4. The horizontal lines shown in

Fig. 3 are the steady-state values of the concentration in

each of the columns. Corresponding data were obtained for

Fig. 3. Concentrations in selected columns, x, of an isotropic (��1) membrane of thickness L�20, as a function of time during the transient portion of TCP

simulations. Steady-state concentrations are shown as dashed lines.
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all simulations reported here, and used to check that steady-

state conditions had been reached.

The A-concentration near the in¯ow side of the mem-

brane increases rapidly at short times and overshoots the

steady-state value at intermediate times (t�3000�). This

overshooting is a result of A-particles diffusing rapidly into

the empty lattice before there is a signi®cant number of B-

particles near the A-in¯ow edge, and becomes more dra-

matic for small values of �. At a time of about t�3000� , the

total concentration, �T, reaches its steady-state value

throughout the lattice. The time required for this to occur

is governed by the single-component transport diffusion

coef®cient, which governs the uptake of the total concen-

tration, independently of the anisotropy �.
For times greater than t�3000� , diffusion within the

membrane is governed solely by the equimolar counter-

diffusion eigenmode. This eigenmode is slower than the

single-component diffusivity and is the reason for the

relatively slow approach to steady-state. While the A-con-

centrations near the left edge of the lattice overshoot their

steady-state values, the A-concentrations near the right edge

initially under-shoot their steady-state values. This feature is

required by the symmetry of the TCP boundary conditions,

where the A-concentration in column x is equivalent to the

B-concentration in column Lÿ(xÿ1), so that �A(x)��B(x)�
�T(x)��T(Lÿ(xÿ1))��A(x)��A(Lÿ(xÿ1)).

An initial test of the simulation method was to compare

the simulation values of �T(x) with the predictions of the

®nite difference formulation (FDF) of diffusion theory for a

single-component. The FDF for a single-component pro-

vides a numerically exact prediction for membranes of any

thickness and for any value of the lattice anisotropy �. This

simple comparison was performed as described in [7], and

we found no statistically signi®cant deviations between the

simulation results and the FDF for single-component diffu-

sion. It should be noted that choosing a `̀ bad'' random

number generator can cause signi®cant deviations. In the

simulations reported here, we used the `̀ ran2'' random

number generator described in [38], which produced no

signi®cant deviations from expected transport behavior.

The steady-state concentration values were obtained from

the steady-state portion of the simulations (t�10 000� to

t�55 000�). From the out¯ow, an average ¯ux through the

lattice was determined, and this was used with the concen-

tration gradient to determine the apparent diffusivity

between two adjacent columns of the lattice according to

D�A�x� �
J

�A;x ÿ �A;x�1

: (21)

The apparent diffusivity in Eq. (21) was converted into a

spatially local correlation factor using Eq. (9). A direct

result of Eq. (21) at constant total occupancy is that when-

ever the correlation factor is constant in space, the steady-

state concentration pro®le is linear. Hence, in what follows

we will simply report the correlation factor.

We also compared the simulation results with the FDF for

two-component diffusion. At steady-state, the FDF gives a

linear concentration pro®le for species A, assuming that the

correlation factor, and hence the counter-diffusivity, is uni-

form throughout the membrane. As we can see from Fig. 4,

the diffusivity is equal to the theoretical value (dashed line)

throughout most of the lattice. Counter-diffusion between

the rows nearest to the edges gives slightly smaller values

for the correlation factors than in the bulk, because the

particles in the edge row change position more slowly than

particles in the bulk.

Fig. 4. Steady-state concentration profile, �A(x), and local diffusion correlation factor, f(x), within an isotropic membrane of thickness L�20. Circles shown

here correspond to dashed lines in Fig. 3. Local correlation factors agree well with theory for the isotropic membrane, shown as the dashed line.
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In the absence of a general theory for the variation of the

correlation factor near the edges of the lattice, we will make

the approximation that the correlation factor is uniform

throughout the lattice. Tahir-Kheli and El-Meshad [34]

provide a theory for this spatially constant correlation factor

(for �>0) that can be used to solve the FDF independently of

the simulation data. The entire diffusion problem can thus

be reduced to a set of ®nite difference equations as given

above in Eqs. (10) and (11). Unlike the case for single-

component diffusion, the FDF is not numerically exact for

multi-component systems, but as we will see (vide infra),

the errors are usually small and are reduced as the mem-

brane thickness is increased.

5.2. Anisotropic membranes h6�1

Figs. 5 and 6 summarize the results from a number of

TCP computer experiments for membranes of various

thicknesses and anisotropy values. The results discussed

above for ��1 and L�20 are shown in Fig. 5, together with

results for other anisotropies and membrane thicknesses.

Apart from an edge effect increasing correlations in the two

outermost layers, the bulk correlation factor is independent

of lattice size. This length independence is characteristic of

`̀ normal'' diffusion, where the diffusivity is a manifestation

of localized phenomena that do not depend on system size.

The results for membranes with ��100, 10, 1, 0.1, 0.01 are

summarized in Fig. 5. We ®nd that the counter-diffusivity

depends strongly on the anisotropy of the membrane, but is

independent of membrane thickness away from the edges, in

an analogous manner to the isotropic membranes. Hence,

for these values of the anisotropy, the system exhibits

normal transmembrane counter-diffusion.

5.3. h�1 ± Mean field theory

In the limit that �!1, diffusion in the y-direction is

much faster than in the x-direction, so that any correlations

between jumps in the x-direction are washed out by the rapid

motion in the y-direction. As a result, the correlation factor

approaches unity for all concentrations as �!1. We can

see from Fig. 5 that for ��100, the correlation factor is

already nearly equal to one. In this limit, the counter-

diffusivity or self-diffusivity is given by:

DS � D0�1ÿ �T�; (22)

which is the result predicted by mean ®eld theory. In the

mean ®eld theory, correlations are ignored so that the

correlation factor has a value of unity. It is in this limit,

�!1, that the matrix diffusion theory outlined above

reduces to the matrix theory of Qureshi and Wei [32]. This

limit is also consistent with the Darken equation, eq. (1.30)

in [1]:

D � Ds
@ lnf

@ ln�

� �
T

: (23)

For single-component Langmuirian systems, D�D0 and

Eq. (23) gives DS�D(1ÿ�T)�D0(1ÿ�T), which is consis-

tent with our results in the limit �!1. Hence, in this limit

the predictions of mean ®eld theory, the Darken equation,

Eq. (23), and our matrix formulation coincide. For ®nite

values of �, Eq. (22) is in error by a factor inversely

Fig. 5. Local diffusion correlation factors, f(x,�), for anisotropic membranes of thicknesses L�10 to L�100 in the `̀ normal'' diffusion regime. The

correlation factor for specified anisotropy, �, is independent of membrane thickness away from the edges. As � increases, correlation factors approach the

mean field limit, f�1.
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proportional to the correlation factor f, which, as we will

show below, tends to zero for highly anisotropic lattices with

��1.

We note that the large � limit discussed here involves a

membrane for which diffusion in the fast lattice direction is

not driven by any concentration gradient. This can only

happen in a real system if the ends of the y-channels are not

in contact with the external ¯uid, either by being blocked by

the membrane's support, or in a free crystallite if unfavor-

able lattice terminations block the entrances to the edge sites

in the y-direction. Otherwise, if the y-channels exchange

particles with the external reservoirs, then the present

��100 case will be controlled by the faster diffusion in

the y-direction, and thus be comparable to the situation here

with ��0.01 (viz. exchanging the x- and the y-axis labels).

In this case, the anisotropy justi®es the use of a one-

dimensional, ¯at-plate solution to the single-component

diffusion problem along the fast-diffusion direction, as

diffusion in the slow directions can be neglected. MagalhaÄes

et al. [19] found that just such a one-dimensional diffusion

model quantitatively reproduced single-component trans-

port diffusion of a number of sorbates in silicalite crystals,

Fig. 6. Local diffusion correlation factors, f(x,�), for highly anisotropic membranes (��1) of thicknesses L�10 to L�100. (a) ��0.001 membranes show

single-file signature for L<40 and approach normal diffusion for L>40; (b) ��0, diffusivity is strictly single-file and decreases with L for all membrane

thicknesses.
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with a concentration independent transport diffusivity as

predicted by the Langmuirian model investigated here.

The �>1 anisotropic two-dimensional zeolite also pro-

vides an illustrative model showing how correlation effects

can be reduced in zeolite systems with more than one

particle jump rate. Consider a host±guest system such as

Na-Y-benzene. Na-Y is a cage-type zeolite with four cation

SII adsorption sites per cage. Several calculations have

shown that intra-cage benzene motion in Na-Y occurs on

a timescale signi®cantly shorter than inter-cage motion [40±

43], the latter leading directly to self-diffusion through Na-

Y. KMC simulation results for this system agree remarkably

well with mean ®eld theory, but no explanation for this

agreement was available at the time. The intra-cage jump

rate has little effect on the observed diffusion coef®cient

because intra-cage jumps, by themselves, cannot produce

long range displacement. This is analogous to the jumps in

the y-direction, which by themselves cannot produce trans-

port diffusion in the x-direction of the anisotropic zeolite

membrane. In analogy with the anisotropic membrane with

�>1, the rapid, intra-cage jumps wash out correlations

between inter-cage jumps, thereby giving diffusion in Na-

Y modeled well by mean ®eld theory.

5.4. h�1 ± Single-file versus normal diffusion

Fig. 6(a) and (b) show steady-state diffusion data for

highly anisotropic membranes where diffusion in the trans-

membrane direction is much faster, i.e. ��1. Although the

��0.01 diffusivities are independent of membrane thickness

for all cases studied, the ��0.001 diffusivities depend on

membrane thickness for thin membranes, but approach a

constant limiting value for thicker membranes. This indi-

cates that for small values of �, a relatively large lattice is

required to reach the thick membrane limit, where the

correlation length for diffusion is small compared to the

system size. For thin membranes and small values of �, a

diffusion mode with correlation lengths comparable to the

membrane thickness, i.e. a global mode of diffusion, dom-

inates. The extreme case of this occurs when ��0 and

diffusion is strictly single-®le. In this type of lattice there

is no localized mechanism for diffusion [24], and the

diffusion coef®cient always depends on system size, as

shown in Fig. 6(b) and Fig. 7.

We have developed a theory for TCP in high occupancy,

single-®le membranes that explains the limiting behavior,

namely that D�A ! 0 as the thickness of the membrane

L!1. Our theory, which will be reported in a forthcoming

publication [24], gives the following expression for the

counter-diffusivity as a function of total occupancy and

membrane thickness, in the thick membrane limit:

D�A �
D0�1ÿ �T�

L�T

(24)

Very recently, this same expression was derived indepen-

dently by Hahn and KaÈrger [23], for the long-time limit of

the collective self-diffusion coef®cient in a single-®le mem-

brane in the absence of driving forces. Qualitatively speak-

ing, the factor 1/L arises because single-®le counter-

diffusion at high occupancies is a compound process,

requiring a vacancy to traverse the entire length of the

membrane to produce a particle displacement of one lattice

spacing.

In comparing Fig. 6(a) and (b), we ®nd that diffusion

through thin membranes with ��0.001 is qualitatively

similar to single-®le diffusion, depending on membrane

Fig. 7. The three types of membrane thickness dependence for the diffusivity: ��0.01, diffusivity independent of thickness; ��0.001, diffusivity approaches

finite value as L!1; and ��0, diffusivity tends to zero as L!1. Open circles are simulation data and solid lines are fit to the L�40 data points.
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thickness in a similar manner. However, when the mem-

brane is suf®ciently thick for any �>0, normal diffusion

takes over. In general, this occurs when the single-®le

diffusion coef®cient becomes less than the limiting normal

diffusion coef®cient, which for ��0.001 occurs at a cross-

over thickness of about Lc�30. The condition that �>0 is

similar to allowing particles in a one-dimensional tube to

pass by each other [44]. This reduces the range of correla-

tions among the particles from the width of the membrane to

the length-scale required for exchange with a neighboring

®le.

Fig. 7 shows the bulk diffusivities for membranes with

��0.01, 0.001 and 0 as a function of inverse membrane

thickness, 1/L. As L!1 and 1/L tends to zero, the diffu-

sivities tend to a ®nite value so long as �>0. For ��0.01, the

linear ®t through the four data points (L�40 shown in

Fig. 7) has approximately zero slope. Thus, the correlation

factor is essentially independent of membrane thickness and

is governed by the normal diffusion mode.

For ��0.001, the correlation factor decreases with

increasing length. The linear ®t through the four data points

(L�40 shown in Fig. 7), has a non-zero intercept at in®nite

thickness (1/L�0). Thus, for suf®ciently thick membranes,

normal diffusion dominates and the diffusivity is indepen-

dent of membrane thickness. The crossover thickness, Lc,

for ��0.001 can be estimated from Fig. 7 as being Lc�30,

where the thick membrane normal diffusivity, as given by

the intercept of the ®t, equals the single-®le diffusivity on

the ��0 curve.

For ��0, the correlation factor decreases with increasing

length. The non-linear ®t through the four data points (L�40

shown in Fig. 7) is consistent with the limiting form of

Eq. (24), and will be discussed in more detail in a forth-

coming publication. The most salient point is that the

diffusivity tends to zero for thick membranes, and there

is no region where the diffusivity is independent of mem-

brane thickness.

6. Discussion

6.1. Permeation experiments

In this section, we de®ne expressions that relate our

simulation results to future TCP experiments using Lang-

muirian membranes when normal diffusion holds, i.e. �>0.

Although we have only simulated relatively thin mem-

branes, the diffusion theory is applicable to systems of

arbitrary extent when normal diffusion dominates. In per-

meation or counter-permeation experiments, it is usually not

possible to measure the intra-crystalline concentrations

directly. Rather, only properties external to the membrane,

such as the left and right reservoir partial pressures and the

transmembrane ¯ux, are experimentally accessible. If at

steady-state we make the approximation that the local

apparent diffusivity, D�A, is constant throughout the interior

of the membrane, then the intra-membrane concentration

pro®le is linear and we can write Fick's law in terms of the

concentration difference between columns 1 and L, so that:

JA � ÿD�A
�A;L ÿ �A;1

�Lÿ 1� : (25)

At the left and right edges of the membrane, respectively,

the ¯ux is given by:

JA � vA;1�1ÿ �T;1� ÿ kd�A;1 and

JA � kd�A;L ÿ vA;L�1ÿ �T;L�; (26)

where vA,1 and vA,L are the constant insertion rates from the

left and right ¯uid phases into columns 1 and L, respectively.

For generalized steady-state TCP, the ¯uids on either side of

the membrane may be A±B mixtures, and it is required that

vA,1�vB,L, vA,L�vB,1 so that:

�T;1 � �T;L � �T � 1

1� �kd=vT� (27)

at steady-state, where vT�vA,1�vB,1, and we can solve

Eqs. (25)±(27) to obtain:

JA � ÿ D�A�1ÿ �T�
kd�Lÿ 1� � 2D�A

� �
�vA;L ÿ vA;1�: (28)

If the particle reservoirs are ideal gas mixtures, then the

insertion rates, vA,1 and vA,L, can be replaced with terms

proportional to the external partial pressures of species A.

The permeance of the membrane is therefore proportional to

the term in square brackets in Eq. (28).

When kd�Lÿ 1� � D�A, diffusion through the membrane

is much slower than desorption from the edges, so that

transport through the membrane is diffusion-limited and

Eq. (28) can be approximated by:

JA � ÿ D�A�1ÿ �T�
kd

� � �vA;L ÿ vA;1�
L

; (29)

where we have further assumed that L�1. The term in

square brackets in Eq. (29) is proportional to the perme-

ability coef®cient, which in this limit is independent of

membrane thickness. Eq. (29) may also be derived by

combining Eq. (25) with the assumption that the edge

columns are in local thermodynamic equilibrium with the

particle reservoirs, i.e. �A,1�vA,1(1ÿ�T)/kd and similarly for

column L. This means that the assumption of local thermo-

dynamic equilibrium as discussed in Section 5 is only valid

when permeation is diffusion limited.

In the opposite limit, where transport through the

membrane is sorption limited, i.e. D�A � kd�Lÿ 1�, we ®nd

that:

JA � ÿ�1ÿ �T��vA;L ÿ vA;1�=2; (30)

so that the permeance is proportional to the vacancy con-

centration (1ÿ�T)�(1�(vA/kd))ÿ1 and is independent of

membrane thickness and the diffusivity. In this latter case

we ®nd that the permeability coef®cient is proportional to
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the membrane thickness L, rather than being independent of

L (viz. Eq. (29)).

For the simulation results presented here, the ratio

kd�Lÿ 1�=D�A ranges from about 1 for the ��100 simula-

tion with L�10 to a value of about 1000 for the ��0

simulation with L�100. For a given system D�A / kx, and

hence the ratio kd=D�A depends on temperature as indicated

in Eq. (19). For silicalite-cyclohexane at room temperature,

we ®nd that the ratio kx/kd�23 000, and that the diffusion

and sorption times are approximately equal for a membrane

about L�1000 sites thick, corresponding to a membrane

about 1 mm thick. This indicates that diffusion will not

control permeation in real Langmuirian membranes at

suf®ciently low temperatures. This is only true if Ed is

larger than Ex, which is the case considered in the simula-

tions. However, it is possible although unlikely that Ed may

be less than Ex in some Langmuirian host±guest systems. In

this case, the ratio kx/kd will decrease with temperature so

that the system will become more diffusion limited as

temperature in decreased.

In actual TCP experiments, it may be convenient to have

initial conditions different from those used in the computer

experiments reported here. We suggest that in actual TCP

experiments, the membrane be equilibrated with the same

gas mixture on both sides of the membrane. At time t�0 the

¯uid on the left-hand side should be replaced with the

desired mixture. The steady-state counter-permeation will

be the same as discussed above, but the transient is now

governed by the counter-diffusion eigenmode. This has the

advantage that the diffusivity determined by the time-lag

method [45] is now a true counter-diffusivity, which can be

directly compared with the diffusivity obtained from the

slope of the steady-state out¯ow. When kd�Lÿ 1� � D�A,

the time-lag diffusivity will equal the out¯ow slope diffu-

sivity. If kd(Lÿ1) is not signi®cantly greater than D�A, then

the time-lag diffusivity will be different from the steady-

state slope diffusivity, and an estimate of kd can be obtained

by comparing them.

7. Conclusion

We have modeled the steady-state analog of self-diffu-

sion, tracer counter-permeation (TCP), in zeolite mem-

branes of ®nite thickness via kinetic Monte-Carlo

methods. The membrane and diffusing particles have a

Langmuir-type isotherm. We performed our TCP simula-

tions near the saturation point of the membrane lattice. The

intra-lattice diffusivities were determined from local con-

centration gradients and the steady-state transmembrane

¯ux using Fick's law. The in¯uences of diffusion anisotropy

and membrane thickness were investigated for this Lang-

muirian host±guest system with a desorption rate that was

realistically slow compared to the diffusion jump rate.

We identi®ed two mechanisms for counter-diffusion at

high occupancy, depending upon the value of an anisotropy

parameter, ��ky/kx, where kx is the jump rate coef®cient

along the transmembrane direction, and ky is that normal to

the transmembrane direction. The ®rst is a `̀ normal'' coun-

ter-diffusion mechanism, in which diffusion is a localized

phenomenon, occurring with a correlation length signi®-

cantly less than the membrane thickness. The counter-

diffusivity is constant throughout the membrane and is

independent of membrane thickness. As � approaches in®-

nity, correlations in the transmembrane direction are washed

out by rapid motion in the y-direction, and the counter-

diffusivity approaches mean ®eld predictions. For decreas-

ing values of �, motion in the transmembrane direction

becomes more correlated, which decreases the counter-

diffusivity.

The other mechanism is a `̀ single-®le'' counter-diffusion

mechanism, in which diffusion is a global phenomenon,

occurring with a correlation length equal to the membrane

thickness. In the single-®le mechanism, the diffusivity is

constant throughout the membrane and decreases with

membrane thickness. In the extreme case, ��0 and motion

in the y-direction is not possible. Counter-diffusion through

the membrane is then strictly single-®le for all membrane

thicknesses and becomes inversely proportional to mem-

brane thickness in the thick-membrane limit.

For highly anisotropic membranes satisfying 0<��1,

there is a crossover thickness, Lc, between the single-®le

and normal diffusion modes. For membranes thinner than

Lc, transport is achieved primarily by the global, single-®le

mechanism. As the membrane thickness is increased, diffu-

sion produced by the single-®le mechanism slows, until for

membranes thicker than Lc, transport is achieved primarily

by normal diffusion. The normal diffusion mechanism

dominates in all suf®ciently thick membranes with � 6�0.

We have presented a general theory for tracer diffusion in

Langmuirian host±guest systems, based on a matrix form of

Fick's law. This theory also includes a ®nite difference

formulation that can be applied to a ®nite difference grid

corresponding to the adsorption sites of the zeolite, and

includes the adsorption and desorption rates at exposed

lattice edges. Transport problems with boundary and initial

conditions different from those considered above can be

solved using the theory. For example, self-diffusion is

equivalent to equimolar counter-diffusion at long times;

the tracer zero-length column (TZLC) technique corre-

sponds to a transient counter-diffusion problem; and TCP

is a steady-state problem within the counter-diffusion eigen-

mode.

The theory exhibits a kinetic limitation at the exposed

lattice edges, which may prevent the edge sites from reach-

ing local thermodynamic equilibrium with the external

phase even after steady-state is achieved, if the `̀ diffusion

time'' is not signi®cantly longer than the `̀ sorption time.''

The diffusion time through a membrane of thickness L is

approximately given by L2/D where D is the counter-diffu-

sivity. The sorption time is given by L/kd, where kd is the

desorption coef®cient. When the diffusion time is much
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longer than the sorption time, transmembrane permeation is

diffusion-limited and the transport can be modeled as a

diffusion problem with constant-concentration boundary

conditions, giving a membrane permeability coef®cient that

is independent of thickness. When the sorption time is much

longer than the diffusion time, transmembrane permeation is

sorption-limited and the membrane permeability coef®cient

depends upon membrane thickness. In the sorption-limited

case, the permeance is the quantity that is independent of

thickness. The lack of local thermodynamic equilibrium at

the edges can have a signi®cant effect on the overall

transport problem, even in relatively large systems. For

example, using the local thermodynamic equilibrium

assumption, the counter-permeance of a 0.1 mm silicalite

membrane to cyclohexane is overestimated by about an

order of magnitude.

In future work we will present a theory for single-®le

tracer counter-permeation in Langmuirian membranes of

arbitrary thickness. Extension of the simulation technique to

non-identical multicomponent systems is straightforward.

However, the theory becomes more complex because the

eigenmodes of the diffusion matrix no longer correspond to

the single component transport- and self-diffusivities

[25,32]. Further development of the model to include more

complicated lattice structures and sorbate±sorbate interac-

tions is planned, to investigate the effects of these changes

on the base model presented here.
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